Каталог книг:


Взгляд на математику и нечто из нее - Содержание - О зарождении математики (продолжение 2)

О зарождении математики (продолжение 2)

Из этого отрывка видны некоторые из обязанностей писца. Речь идет не о каких-то мистических тайнах мироздания или, что то же, богов, чего можно было бы ожидать от жрецов, а о весьма прозаических делах, требующих определенной квалификации. Видно также, что уже три с половиной тысячи лет назад объективно прогрессивный процесс разделения труда дошел до того, что видный организатор науки (протонауки) мог быть не очень в ней силен.

На более позднем этапе (и, может быть, более в Вавилоне, чем в Египте), видимо, сыграли свою роль и "высокие" мотивы вместе с соответствующими возможностями в смысле досуга, о чем говорил Аристотель. Жрецы тоже могли выступить на сцену. Им не приходилось подсчитывать число кирпичей, но они, может быть, занимались астрономией ради астрологических предсказаний. Тогда не могло быть речи о составлении гороскопов, требующем знания положения планет на небе, начиная с момента рождения того лица, для которого составляется гороскоп, и на много лет после того. Но тогда была, так сказать, "протоастрология", делавшая предсказания на более короткие отрезки времени на основании более ограниченных данных о виде неба. С развитием астрономии в ней появилась немаловажная вычислительная сторона, требовавшая некоторой математики. Впрочем, насколько во всем этом участвовали жрецы - неизвестно. Известно, что заведомо существовали астрологи-профессионалы, которые не были жрецами.

В вавилонской протонауке уже определенно происходил переход к науке. В клинописных текстах рассмотрено много задач, не имеющих отношения ни к кирпичам для насыпи, ни к другим видам практической деятельности. Фактически, там решаются квадратные уравнения и даже отдельные уравнения более высоких степеней - и это без алгебры! Вавилоняне знали так называемую теорему Пифагора и теорему, обратную к ней. Это как раз могло иметь отношение к землемерию, потому что позволяло с помощью веревки построить прямой угол. В более позднюю эпоху, когда в Греции уже зародилась наука в нашем смысле слова, какие-то геометрические построения на местности с помощью веревки уже определенно производились. На сей счет имеется прямое свидетельство Демокрита, который с гордостью заявил: "В построении линий с доказательствами я никем не был превзойден, даже так называемыми египетскими гарпедонавтами1". В словах Демокрита удивительно упоминание о доказательствах. Ни в одном египетском или вавилонском тексте ничего похожего на доказательства нет. Но, с другой стороны, часть вавилонской протонауки достигла уже такого уровня, когда соответствующие результаты невозможно было получить без каких-то рассуждений, может быть и не дающих исчерпывающе строгого доказательства, но приближающихся к нему. А Демокрит состязался с гарпедонавтами в довольно позднее по масштабам древнеегипетской истории время. Увы, повторяю, что ни одного текста с доказательствами до нас не дошло. Уверенно реконструируется благодаря более поздним индийским источникам только одно-единственное рассуждение - доказательство теоремы Пифагора.


1Греческое слово "гарпедонавт" означает "натягивающий веревку".





Это интересно!

Полезные ссылки